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Abstract. In this paper we find non-trivial vacuum states for the renormalizable non-commutative φ4 model.
An associated linear sigma model is then considered. We further investigate the corresponding spontaneous
symmetry breaking.

1 Introduction

Non-commutative quantum field theory (for a general
review, see [1, 2]) – that is, field theory based on non-
commutative geometry (see [3] for a general review) –
is nowadays one of the most appealing candidates for
new physics beyond the standard model. Moreover, non-
commutative field theory can be seen as an effective regime
of string theory [4, 5]. From a different point of view,
non-commutativity is well adapted for the description of
physics in the presence of a background field, like for ex-
ample the fractional quantum Hall effect [6–8].
Non-commutative physics is known to suffer from

a new type of divergence, UV–IR mixing; a divergence
that is responsible for the non-renormalizability of the
models. This difficulty was resolved for scalar Φ4 models
by the introduction of a new harmonic term in the ac-
tion – the Grosse–Wulkenhaar model. The model was
proven to be renormalizable at any order in perturbation
theory [9–13]. Moreover, the parametric representation
was introduced [14] and then dimensional regularization
and renormalization were performed [15]. Let us also em-
phasize here that the Hopf algebra description of this
type of renormalization was given in [16]. Moreover, let
us also stress here the fact that it was recently shown [17]
that this type of action can be interpreted from the spec-
tral action point of view (for the latest developments,
see [18]).
The Grosse–Wulkenhaar model was however proven to

have a better flow behavior with respect to the commu-
tative φ4 model. Indeed, in [19–21] was proven that this
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model does not present a Landau ghost; let us recall that
this was not the case for the commutative model.
Another improvement with respect to commutative

scalar quantum field theory is that a constructive version
(for a general review, see [22]) is within reach [23, 24].
In this paper we first obtain vacuum states which,

because of the presence of this new harmonic term,
must be non-trivial functions of the space-time pos-
ition x. Note that a somewhat similar conclusion regard-
ing a non-constant vacuum was also obtained recently
in [17]. We then analyze the issue of spontaneous sym-
metry breaking for a non-commutative analog of the lin-
ear sigma model with a harmonic term at the classical
level. The model we consider here is a non-commutative
linear sigma model based on a set of N scalar fields
but in the presence of harmonic terms for each of these
scalars.
Note that the Goldstone theorem for the non-commu-

tative linear sigma model without harmonic term was
already investigated up to one loop [25–27] and two
loops [28]. Other investigations regarding different non-
commutative models were done in [29–32]. Within these
models it was found that the situation for the Goldstone
theorem followed rather closely the features of the commu-
tative case. In the present case we find that the situation is
much more involved.
The paper is organized as follows. In Sect. 2 we give

some notation and conventions and we introduce the
Grosse–Wulkenhaar model as well as some existing re-
sults. In Sect. 3 we find vacuum states v(x), analyzing
under what conditions they are solutions of the equations
of motion. Then we investigate the issue of spontaneous
symmetry breaking for the linear sigma model. Finally,
in Sect. 4 our concluding remarks and discussions are
given.
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2 Notation and conventions:
the Grosse–Wulkenhaar model

We first collect the basic ingredients on the Moyal alge-
bras (see for example [33–37] and references therein). We
consider a D-dimensional Moyal algebraM that can con-
veniently be defined using the following relation:

[xµ, xν ]� = iΘ
µν , (1)

where [a, b]� = a� b− b �a and the skewsymmetric matrix
Θ is given by

Θ =

⎛
⎜⎜⎜⎜⎝

0 −θ
θ 0

0

. . .

0
0 −θ
θ 0

⎞
⎟⎟⎟⎟⎠
. (2)

The Moyal product of two functions f and g can be defined
by

(f � g)(x)

=
1

πD|detΘ|

∫
dDydDz f(x+y)g(x+ z)e−2iyΘ

−1z .

(3)

We will mainly consider the cases D = 2 and D = 4. Let
us now list some useful formulas, which will be used in the
calculations. The trace and cyclicity relations are given by

∫
dDxf(x)� g(x) =

∫
dDxf(x)g(x) ,

∫
dDxf(x)� g(x)�h(x) =

∫
dDxh(x)�f(x)� g(x) ,

(4)

for any functions f, g and h. Furthermore let

x̃= 2Θ−1x . (5)

Note that this vector is known to play a crucial role
in the construction of canonical gauge invariant connec-
tions [37–40]. One has

∂µφ=−
i

2
[x̃µ, φ]� ,

x̃µφ=
1

2
{x̃µ, φ}� , (6)

where {a, b}� = a� b+ b �a. Note that (2) and (5) lead to

∂µx̃µ = 0 (7)

and that (6) can be rewritten as

x̃µ �f = x̃µf +i∂µf ,

f � x̃µ = x̃µf − i∂µf . (8)

The Moyal space, being a linear space of infinite dimen-
sion, admits a particular basis, the matrix basis (for more
details, see for example [33, 41] and references therein).

This basis involves an infinite set of Schwartz functions,
which forD = 2 can be indexed by two natural numbersm
and n, namely fmn(x). Some relevant properties are given
in the appendix.
We consider the Euclidean action for the Grosse–

Wulkenhaar model [9, 10] and its complex-valued version,
respectively given by

S[φ] =

∫
dDx

(
1

2
∂µφ�∂µφ+

Ω2

2
(x̃µφ)� (x̃µφ)

−
µ2

2
φ�φ+λφ�φ�φ�φ

)
(9)

and

SC [φ] =

∫
dDx

(
∂µφ

† �∂µφ+Ω
2(x̃µφ)

† � (x̃µφ)

−µ2φ† �φ+λφ† �φ�φ† �φ
)
,

(10)

where one considers a negative mass parameter,−µ2.
Let us emphasize here that the interest in the analy-

sis of a real field φ comes basically from the possible in-
sights with respect to the study of non-commutative gauge
theories. Recently, potential candidates for renormalizable
gauge theories on Moyal spaces have been singled out
in [38, 39] (see also [37, 40]). Although such a construction
is a necessary step towards the elaboration of renormaliz-
able gauge theory, it has been recognized that these can-
didates have a non-trivial vacuum [17, 38, 39]. Its explicit
determination is the next challenging problem that must
be overcome in order to build a meaningful perturbative
expansion that could be used to check renormalizability.
Recall that these actions are covariant under the

Langmann–Szabo duality [42] duality, which relates the IR
and UV regions. Throughout this paper we mainly assume
Ω = 1 (the point where the actions (9) and (10) become
invariant under this Langmann–Szabo duality). Moreover,
the value Ω = 1 is stable under the flows of the renormal-
ization group [19–21].
In the following we will determine and study a class

of non-trivial minima for the real-valued field theory (9),
using the matrix space formalism. It turns out that non-
trivial (i.e. non-constant) vacua occur generically for (9)
and (10) whenever Ω �= 0.

3 Vacuum configurations;
spontaneous symmetry breaking

3.1 The complex-valued scalar field theory

Let us first treat the case of the complex field. The equation
of motion obtained from (10) is

−∂2φ+Ω2x̃2φ−µ2φ+2λφ�φ† �φ= 0 . (11)

From (11) it can easily be seen that the harmonic term
prevents a constant non-zero field from satisfying the equa-
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tion of motion. This implies that constant vacua are forbid-
den, contrary to what happens in commutative models as
well as in non-commutative models with Ω = 0. Note that,
as already stated in the introduction, a similar observation
was done in [17]. Moreover, note that a specific type of non-
constant configuration v(x), stripe phases, were analyzed
in a different context in a non-commutative framework
in [30].
Using (6), (11) can be rewritten as

1

4

(
1+Ω2

) (
x̃2 �φ+φ� x̃2

)

−
1

2

(
1−Ω2

)
x̃µ �φ� x̃µ−µ

2φ+2λφ�φ† �φ= 0 . (12)

Specializing from now on to the caseΩ = 1, the equation of
motion simplifies to

1

2

(
x̃2 �φ+φ� x̃2

)
−µ2φ+2λφ�φ† �φ= 0 . (13)

For reasons of simplicity, we restrict ourselves to D = 2.
The adaptation of this analysis to the case D = 4 is
straightforward, as will be explained in the sequel.
We now look for solutions of (13) in the form

v(x) = afm0n0(x) , (14)

where m0, n0 are fixed integers, a ∈ C∗ and fm0n0(x) are
elements of the matrix basis (see the appendix). The equa-
tion of motion (13) is written in the matrix basis

4

θ
(m+n+1)φmn−µ

2φmn+2λφmkφ
†
klφln = 0 . (15)

Inserting now in (15) the ansatz (14), written as

φmn = aδmm0δnn0 , a ∈ C
∗ (16)

one has

a

(
4

θ
(m0+n0+1)−µ

2+2λ|a|2
)
= 0 . (17)

This implies

|a|2 =
1

λθ

(
µ2θ

2
−2(m0+n0+1)

)
, (18)

so that consistency requires the following condition on the
mass (or equivalently on the indicesm0 and n0):

µ2 >
4

θ
(m0+n0+1) . (19)

Thus all the functions proposed in (14) with a satisfying
(18) are solutions of the equation of motion if the condition
(19) is verified. We denote

pC =

⌊
µ2θ

4
−1

⌋

(where �.� is the integer part). If pC is negative, the only
possibility is the trivial solution. If pC is positive, the so-
lutions denoted by the indices m0 and n0 have to satisfy
the constraint m0+n0 ≤ pC . The number of solutions of

the form (14) is
∑pC
k=0(pC−k+1) =

(pC+1)(pC+2)
2 . We will

proceed with the interpretation of these observations in the
next subsection, where a similar description can be done.
At this point, we make the following observation. The

transformation

φm,n �→ φ
′
m,n = φm−1,n (∀n ∈ N , φ′0,n = 0)

µ2 �→ µ2+
4

θ
(20)

is a symmetry of the equation of motion (13). Let us
take a solution vmn = a(µ

2)δmm0δnn0 and let this symme-
try act on it: v′m,n = a

(
µ2− 4

θ

)
δm,m0+1δn,n0 ; then v

′
m,n is

also a solution of the equation of motion. As the complex
conjugation is also a symmetry of (13), we find that the
composition

φm,n �→ φ
′
m,n = φm,n−1 (∀m ∈ N , φ′m,0 = 0) ,

µ2 �→ µ2+
4

θ
(21)

is also a symmetry. We notice that with these two trans-
formations, all the solutions (14) of the equation of motion

can be derived from a single one,
√
2
λθ

(
µ2θ
4 −1

)
f00(x).

For Ω �= 1, the equation of motion (12) is written in the
matrix basis

2

θ
(1+Ω2)(m+n+1)φmn

−
2

θ
(1−Ω2)

√
(m+1)(n+1)φm+1,n+1

−
2

θ
(1−Ω2)

√
mnφm−1,n−1−µ

2φmn+2λφmkφ
†
klφln = 0 .

(22)

All solutions of the form (14) do not verify this new equa-
tion (22) if Ω �= 1. Nevertheless, it is possible to find some
solutions of (22), for instance the sum of two elements of
the matrix basis. The full analysis of the case Ω �= 1 de-
serves further investigation, which goes beyond the scope
of this paper.

3.2 The real-valued scalar field theory

In the case of a real field φ, the equation of motion derived
from (9) reads

−∂2φ+Ω2x̃2φ−µ2φ+4λφ�φ�φ= 0 , (23)

which for Ω = 1 can be rewritten as

1

2
(x̃2 �φ+φ� x̃2)−µ2φ+4λφ�φ�φ= 0 . (24)

We now look for solutions of (24) whose form is given by
a similar ansatz to the one of the complex case; see (14).
Note, however, that the vacuum must now be consistent
with the reality condition v†(x) = v(x). We put

v(x) = am0fm0m0(x) , m0 ∈ N . (25)
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Note that there is no Einstein summation convention (m0
is fixed). The equation of motion (24) can be re-expressed
in the matrix basis:

4

θ
(m+n+1)φmn−µ

2φmn+4λφmkφklφln = 0 , (26)

and the ansatz

φmn = am0δmm0δnm0 , am0 ∈ R
∗ . (27)

By insertion of (27) in (26), one finds

am0

(
4

θ
(2m0+1)−µ

2+4λa2m0

)
= 0 . (28)

As a consequence, am0 has to satisfy

a2m0 =
1

λθ

(
µ2θ

4
−2m0−1

)
(29)

and the mass

µ2 >
4

θ
(2m0+1) . (30)

Now, upon setting

p=

⌊
µ2θ

8
−
1

2

⌋
(31)

(the counterpart of pC for the real-valued theory), the dis-
cussion proceeds along the same lines as in the previous
subsection. Namely, if p is negative, no index can satisfy
the condition (30). If p is positive, there are (p+1) solu-
tions of the form (25) satisfying the constraint (30). Notice
that the counterpart of the symmetries (20) and (21) is now

φm,n �→ φ
′
m,n = φm−1,n−1

(∀m,n ∈ N , φ′0,n = 0 , φ
′
m,0 = 0) ,

µ2 �→ µ2+
8

θ
, (32)

so that all the vacua of the form (25) are derived from√
2
λθ

(
µ2θ
8 −

1
2

)
f00(x).

Let us now look for more general solutions of type

v(x) =
∞∑
k=0

akfkk(x) , (ak) ∈ R
N . (33)

The equation of motion (24) then leads to the following
condition on the coefficients ak:

ak = 0 or a2k =
1

λθ

(
µ2θ

4
−2k−1

)
. (34)

Owing to the analysis given above, one readily infers that
the sum involved in (33) cannot run to infinity simply be-
cause one must have k ≤ p.
Therefore,

∑p
k=0 akfkk(x) represents a new set of solu-

tions for the equation of motion, which cannot be derived

from a single one under the symmetry (32). One now has
for the coefficients of v � v �φ and v �φ�v:

(v � v �φ)mn =

(
p∑
k=0

a2kδmk

)
φmn ,

(v �φ�v)mn =

⎛
⎝

p∑
k,l=0

akalδmkδnl

⎞
⎠φmn . (35)

Let us now check if these solutions are minima for the ac-
tion. The quadratic part of the action (9) reads

Squadr = 2πθ

(
2

θ
(m+n+1)−

µ2

2
+2λ

p∑
k=0

a2k(δmk+ δnk)

+2λ

p∑
k,l=0

akalδmkδnl

⎞
⎠φnmφmn . (36)

The propagator Cmn,kl is diagonal:

Cmn,kl = Cmnδmlδnk .

In order to have a minimum, one thus needs Cmn to be
positive for allm,n ∈ N. From (36) one has

C−1mn = αmn+4λπθ

p∑
k=0

a2k(δmk+ δnk)

+4λπθ

p∑
k,l=0

akalδmkδnl , (37)

where

αmn = 4π(m+n+1)−µ
2πθ , and a2k = 0

or a2k =−
αkk

4λπθ
. (38)

For p≥ 0, one has to distinguish between the following
cases.

– m> p and n > p:

C−1mn = αmn = 4π

(
m+n−2

(
µ2θ

8
−
1

2

))
> 0 .

(39)

– m≤ p and n > p: if a2m = 0 then

C−1mn = αmn = 4π

(
m+n−2

(
µ2θ

8
−
1

2

))
. (40)

In order not to have for a certain value of n (p < n ≤
2p−m) that C−1mn < 0, one needs to have a

2
m =−

αmm
4λπθ .

In this case, we have

C−1mn = αmn−αmm = 4π(n−m)> 0 . (41)

– m > p and n ≤ p: is treated along the same lines as
above. C−1mn = 4π(m−n)> 0, because we assumed that
∀k ∈ {0, ..., p}, a2k =−

αkk
4λπθ .
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– m≤ p and n≤ p:

C−1mn = αmn−αmm−αnn+
√
αmmαnn

=−αmn+
√
αmmαnn ≥ 0 , (42)

and C−1mn = 0 holds if and only ifm= n=
µ2θ
8 −

1
2 ∈N.

From the above analysis, one can conclude that one has
a positive defined propagator just for a single solution. This
solution, which is a minimum of the action (9), corresponds
to

v(x) =

p∑
k=0

akfkk(x) , (43)

where a2k =
1
λθ

(
µ2θ
4 −2k−1

)
.

For φ(x) =
∑∞
k,l=0 φmnfmn(x), a solution of the equa-

tion of motion (24), we compute the value of the action (9)
in the matrix basis:

S[φ] = 2π
∞∑
k,l=0

(
m+n−2

(
µ2θ

8
−
1

2

))
|φmn|

2 . (44)

So for p < 0,

S[φ]≥ S[0] = 0 , (45)

and for p≥ 0 and v(x) the vacuum (43),

S[v] =−
8π

λθ

p∑
k=0

(
µ2θ

8
−
1

2
−k

)2
< 0 . (46)

At this point, a remark is to be made. In commutative
QFT or in non-commutative QFT without the harmonic
term, one has the phenomenon of spontaneous symme-
try breaking as soon as the mass parameter is taken to
be negative. For the models considered here this is not
the case anymore. Indeed, if the mass parameter does
not go beyond a certain limit µ2 = 4

θ
, then from (45), we

see that φ(x) = 0 is the global minimum of the action
(9), as p is negative. So the harmonic term will prevent
the phenomenon of spontaneous symmetry breaking from
occurring.
When the mass parameter exceeds this critical value

(i.e. p≥ 0), one can see from (40) that φ(x) = 0 is no longer
a local minimum of the action. Therefore one has to con-
sider a non-trivial vacuum v(x), as for example (43). Note
that (43) corresponds to a different solution when chang-
ing the value of the limit parameter p. Let us now stress
some of the features of these vacuum configurations. Owing
again to the properties of the matrix basis (see again the
appendix), it can be realized that (43) does not vanish for
x= 0, while it decays at infinity (as a finite linear combina-
tion of the Schwartz functions fmn(x)).
Let us further indicate that these results extend in

D = 4 also. Indeed, one just has to replace the indicesm by
(m1,m2) ∈ N2 and the number m by m1+m2. In four di-
mensions, it is well known that when computing radiative
corrections, the mass parameter of a scalar field becomes

huge (because of the quadratic divergence). In order to
get a low value for the renormalized mass, one may thus
consider a non-commutative scalar field theory with a har-
monic term, a negative mass term and a non-trivial vac-
uum. It is further possible to choose (43) as this non-trivial
vacuum, since the special value Ω = 1 is stable under the
renormalization group.
Moreover we also exhibit in the next subsection the fol-

lowing class of solutions of the equation of motion. If one
has a configuration v(x) that satisfies

v � v =−
1

4λ
x̃2+

µ2

4λ
(47)

(see (59), (60) and (63)) then v(x) will also be a solution of
the equation of motion. As already stated in Sect. 3.3 this
type of equation can be easily shown to have non-trivial
solutions using again the matrix basis.
We have thus pointed out in this subsection the exis-

tence of a non-trivial vacuum v(x). Such a vacuum can be
used in the next section, where we consider fluctuations of
fields around such v(x).

3.3 Spontaneous symmetry breaking
for the linear sigma model

As a warming up issue, consider again the action (9) for
a real φ field. This action has a discrete symmetry:

φ→−φ . (48)

As usual, assume that the system is near one of its minima
v(x). Upon setting

φ(x) = v(x)+σ(x) (49)

in (9), one obtains the Lagrangian in terms of the σ field

S =

∫
d4x

((
1

2
∂µσ

)
� (∂µσ)+

Ω2

2
x̃2σσ−

µ2

2
σσ

+4λv �v �σ �σ+2λv�σ �v �σ

+4λv �σ �σ �σ+λσ �σ �σ �σ) (50)

(where we have used (4)). Note that, as in the commutative
case, the symmetry (48) has disappeared. The situation is
exactly the same in the case of a complex field (10).
We now consider the linear sigma model built from the

renormalizable scalar action (9), assuming again Ω = 1.
Additional considerations for Ω �= 1 as well as for the case
of a complex-valued field will be given at the end of this
section.
The action involvesN valued fields φi and is given by

Sσ =

∫
d4x

(
1

2
(∂µφi)� (∂µφi)+

1

2
x̃2φiφi

−
µ2

2
φiφi+λφi �φi �φj �φj

)
. (51)

The action above is invariant under the action of the orth-
ogonal groupO(N) (as is also the case in the absence of the
harmonic term [25–28].
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Let

〈Φ〉= (0, . . . , 0, v(x)) (52)

be a non-zero vacuum expectation value, where v(x) is
some minimum obtained from the equation of motion, as
analyzed in the previous section.
Then shifting Φ to 〈Φ〉+ δΦ with

δΦ= (π1, . . . , πN−1, σ(x)) , (53)

one obtains from (51)

Sσ =

∫
d4x

(
1

2
(∂µπi)� (∂µπi)+

1

2
x̃2πiπi−

µ2

2
πiπi

+2λv �v�πi �πi+λπi �πi �πj �πj

+
1

2
(∂µσ)� (∂µσ)+

1

2
x̃2σσ−

µ2

2
σσ

+4λv �v�σ �σ+2λv �σ �v �σ

+2λσ�v �πi �πi+2λv �σ �πi �πi

+2λσ�σ �πi �πi+4λv �σ �σ �σ

+λσ �σ �σ �σ) . (54)

Consider closer the part of the action (54) quadratic in the
π fields:

∫
d4x

(
1

2
x̃2πiπi−

µ2

2
πiπi+2λv �v �πi �πi

)
. (55)

In the absence of the harmonic term, the linear sigma
model supports a constant non-zero vacuum configuration
leading to the appearance of N massless fields π. Indeed,
the second and the third term in (55) balance each other.
This is an obvious analog of the Goldstone theorem at
the classical level, which has been further verified to the
one- and respectively two-loop order in [25–27] and respec-
tively [28].
When the harmonic term is included in (55) the situ-

ation changes substantially. Indeed, in view of the discus-
sion for the scalar field theory presented above, constant
non-zero vacuum configurations are no longer supported
by the action. Thus, the cancellation of the π mass term
does not occur automatically and must be reconsidered
carefully. The attitude we adopt here is to mimic one of the
main features of the Goldstone theorem of commutative
field theory.
We thus investigate whether or not one can find a vac-

uum v(x) that entails

∫
d4x

(
1

2
x̃2πiπi−

µ2

2
πiπi+2λv �v�πi �πi

)

=

∫
d4x

(
1

2
x̃2πiπi−

µ2

2
(πi �πi)+2λ(v � v)(πi �πi)

)

=

∫
d4x

(
Ω′2

2
x̃2πiπi+ ...

)

(56)

Note that by the dots on the RHS of (56) we mean some
eventual kinetic terms. If such a statement holds this

means that one just has some harmonic type of term for
the fields π; moreover, these fields would be non-massive.
It is this what we propose as a corresponding Goldstone
theorem in our case. Furthermore we also allow for the pos-
sibility Ω′ = 0 (the fields π are non-massive and they have
no harmonic term either).
Moreover, note that this type of masslessness constraint

for the π fields is the most general one that one can impose
here (also introducing a harmonic like free parameter Ω′).
Finally, looking at the LHS of the second line of (56)

one sees that all the terms contain a π �π product except
for the first one. In order to be able to factorize this π �π
product, we now re-express the first term of the LHS also.
Using (4) and (8) one has
∫
d4xx̃2πiπi =

∫
d4x(x̃2πi)�πi

=

∫
d4x
(
x̃2(πi �πi)−∂

µπi∂µπi−2iπix̃µ∂µπi
)
.

(57)

Using now (7) one cancels out the last term in (57). All this
becomes∫

d4xx̃2πiπi =

∫
d4x
(
x̃2(πi �πi)−∂

µπi∂µπi
)
.

(58)

Note that this way of writing may be misleading in the
sense that the kinetic term of the π fields seems to cancel
with the second term in the RHS of (58). However this is
just because of the particular way (58) of writing down the
harmonic term at Ω = 1.
One now introduces (58) in (56). Writing in the same

way as above the RHS of (56) and leaving aside the kinetic
terms, one is finally able to factorize the product π �π to
get the following constraint for the vacuum v:

v � v =−
ω2

4λ
x̃2+

µ2

4λ
, (59)

where

ω2 = 1−Ω′2 . (60)

We have thus proven that this constraint is equivalent to
the constraint (56) that we imposed on the kinetic terms of
the π fields. Moreover, note that (59) presents non-trivial
solutions v(x) as can be seen for example in the matrix ba-
sis.
We now prove that a non-trivial vacuum v(x) satisfying

(59) is a solution of the equation of movement (24) if and
only if one hasΩ′ =0. Indeed, inserting (59) in (24) one has

1

2

(
x̃2 � v+ v � x̃2

)
−µ2 � v+2λv �

(
−
ω2

4λ
x̃2+

µ2

4λ

)

+2λ

(
−
ω2

4λ
x̃2+

µ2

4λ

)
� v = 0 . (61)

which one rewrites as

1

2

(
1−ω2

) (
v � x̃2+ x̃2 � v

)
= 0 . (62)
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If one now requires a non-trivial vacuum v(x), then using
(A.6), one has that the coefficients in the matrix basis of
v � x̃2+ x̃2 � v are 8θ (m+n+1)vmn and, as a consequence,
v � x̃2+ x̃2 � v �= 0. This implies that the only solution of
(62) is

ω = 1 , (63)

which, by (60) leads to

Ω′ = 0 , (64)

as already stated above.
However, (64) considerably simplifies (56), which, once

introduced in the action (54), leaves, for the π fields
part, only the π4 interaction term. Obviously, this is not
physically satisfying.
Finally, let us remark that this situation is imposed by

the cancellation (64), which on its turn is a consequence of
the constraint (59) for a vacuum v(x) (solution of the equa-
tion of motion). So it seems that the condition (59), coming
from the Goldstone theorem in commutative theories, can-
not be imposed for this type of models.
As stated in the beginning of this section, all these cal-

culations are made in the case of a set of real fields φ and
for the particular value Ω = 1. If one allows other values of
the parameter Ω and also considers complex fields φ, the
situation is more intricate. A possible way of approach is
to combine the two constraints (i.e. the equation of mo-
tion and the masslessness (56) of the fields π) into some
stronger constraint for the vacuum v(x), constraint which
finally has to be checked for solutions.

4 Concluding remarks

We have thus analyzed in this paper the spontaneous sym-
metry breaking of the non-commutative scalar model with
a harmonic term, and we found that the mass value µ2 = 4

θ

has a particular importance. For the real case, for µ2 < 4
θ
,

the value φ(x) = 0 is the global minimum of the action. For
µ2 ≥ 4

θ , the value φ(x) = 0 is no longer a local minimum,
so the theory acquires a non-trivial vacuum; a local mini-
mum (43) of the action was found. A further line of work is
to develop the theory around this vacuum and to study its
renormalizability and its renormalization group flows, as it
seems to provide low values for the renormalized mass.
We have also analyzed the spontaneous symmetry

breaking for a corresponding linear sigma model with N
scalar fields and a harmonic term present in the action
for each of these N fields. Even though this seems to be
the most natural way to construct such a linear sigma
model, one cannot a priori state a conclusion with re-
spect to the renormalizability of this model. Moreover,
since one has to deal with vacua that have a non-trivial
dependence on the space-time position x, one can argue
on the interpretation of phenomena like spontaneous sym-
metry breaking or the Goldstone theorem. What we have
achieved in this paper is a calculation of these usual notions

of commutative classical field theory in the framework of
Grosse–Wulkenhaar-like models.
Finally, let us end this paper by reminding the ex-

istence of a second class of non-commutative models,
called “covariant models”. Here one can include the
non-commutative Gross–Neveu model or the Langmann–
Szabo–Zarembomodel [43]. These models also were proven
to be renormalizable [44] and their one-loop β-function was
computed [45]. Moreover, their parametric representation
was implemented in [46] (see [47] for a general review) and
the Mellin representation of their Feynman amplitudes (as
well as for the Grosse–Wulkenhaar model) was obtained
in [48].1

Appendix: the matrix basis

In this appendix we present the definition and some useful
properties of the matrix basis of the Moyal space. For more
details, see for example [33, 41].

Let fmn, m,n ∈ N
D
2 be the set of Schwartz functions

forming the matrix basis, to be given below. Let

H =

D
2∑
	=1

H	, H	 =
1

2

(
x22	−1+x

2
2	

)
, for �= 1, . . . ,

D

2

(A.1)

Furthermore, let

f00(x) = 2
D
2 e−

2
θH . (A.2)

This verifies

f00 �f00 = f00 . (A.3)

One also defines the operators

a	 =
1
√
2
(x2	−1+ ix2	) , ā	 =

1
√
2
(x2	−1− ix2	) ,

(A.4)

together with

fmn(x) =
1

√
m!n!θm+n

ā�m �f00 �a
�n . (A.5)

These functions diagonalize the Hamiltonian (A.1):

H �fmn = θ

(
m+

1

2

)
fmn , fmn �H = θ

(
n+
1

2

)
fmn .

(A.6)

Some useful properties are

f†mn = fnm ,

fmn �fkl(x) = δnkfml(x) . (A.7)

1 For some general reviews on the latest developments on the
renormalizability of non-commutative quantum field theories,
one may refer to [36, 49].
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Finally, let us give, inD = 2, the functions

f10(x) = 2

√
2

θ
(x1− ix2)e

−x
2

θ ,

f01(x) = 2

√
2

θ
(x1+ ix2)e

−x
2

θ . (A.8)
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